▶︎
all
running...
Last Updated On: 2020-07-11 16:21

Bayes Theorem : A Deep dive Guide

P(AB)=P(BA)P(A)P(B)(1)P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{1}

P(AiB)=P(BAi)P(Ai)P(B)A={A1,A2,...,An}(2)P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} \hspace{30pt} \forall \hspace{30pt} A = \{A_1, A_2, ..., A_n\} \tag{2}

p(ab)=p(ba)P(a)p(b)(3)p(a|b) = \frac{p(b|a)P(a)}{p(b)} \tag{3}

Equation Name Meaning
P(AB)P(A \vert B) posterior probabilty Probability of the hypothesis A, given some evidence B
P(BA)P(B \vert A) likelihood Probability of the evidence if hypothesis is true
P(A)P(A) prior probability Probability that hypothesis is true without any constraints (also called as initial probability)
P(B)P(B) total probality Probability of the evidence B

Its Derivation

bayes_tree

P(AB)=P(BA)P(AB)P(B)=P(BA)P(A)P(AB)=P(BA)P(A)P(B)\begin{aligned} P(A \cap B) &= P(B \cap A) \\ P(A|B)P(B) &= P(B|A)P(A) \\ P(A|B) &= \frac{P(B|A)P(A)}{P(B)} \end{aligned}

Equation Name
P(AB)P(A\vert B) Conditional Probabilty
P(AB)P(A \cap B) Joint Probability

Comments

  1. Bayes Theorem : A Deep dive Guide
    1. Its Derivation
  2. Comments